Teaching *Bitcoin* for impact in mathematics in the primary school classroom

Gaia Pillai, Lakemba Public School
Jane Hunter, STEM Education Futures Research Centre, University of Technology

*Bitcoin* is a peer-to-peer electronic cash system; it can be ‘mined’ by solving complex mathematic problems and each time it is mined the transaction is etched in a *blockchain* or a continuously growing list of records. These ‘blocks’ are linked and secured using cryptography and are sent to a distributed ledger of participants. *Bitcoin* has recently captured the attention of the world in a series of sometimes controversial media headlines. Even if the digital currency never really takes the place of fiat money the *blockchain* technology underlying it is changing the way people do everyday transactions. The idea of ‘distribution’ within *Bitcoin* is the key to its value within a future focused curriculum. The impression of there being no centralised body holding or distributing *Bitcoin* and hence, it’s essentially ‘decentralised’ and ‘distributed’ nature is becoming increasingly relevant to more transactions in our everyday lives. These distributed models will enable the average person to contribute on a national and global scale and will necessitate the ‘block chain’ to monitor and manage these micro transactions requiring millions of small players connecting to a wider network in order for it to work. This snapshot presentation introduces how a Stage 2 teacher in a primary school research project used *Bitcoin* to stimulate student interest in science and mathematics as part of a STEM unit of work that engaged an engineering process to explore the future of products and services in Australia. Students were intrigued by a competition to ‘battle it out’ solving maths problems and collected *Bitcoin* as rewards. The *Bitcoin* is updated and recorded on each student’s ledger, which is replicated and distributed identically throughout the classroom. With the class is essentially becoming the *blockchain* of distributed participants. We argue there is significant value in using real world interactions like *Bitcoin* in the context of STEM education to not only teach financial literacy but also upskill students in their knowledge of cryptocurrencies as part of essential mathematics and science learning in primary school classrooms. During the 7-minute presentation ideas, photographs and strategies/processes used in the creation of the integrated unit of work that was underpinned by the *High Possibility Classrooms* framework, will be shared to enable researchers and teachers to consider *Bitcoin* and the *Blockchain* as a critical element in broader discussions about digital technologies and the place of technology enhanced learning where problem solving is a key element in STEM education.